VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (I.T.) IV-Semester Advanced Suppl. Examinations, Aug./Sept.-2023 Design and Analysis of Algorithms

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Q. No.	Stem of the question	M	L	СО	PO
1.	List out the characteristics of an algorithm and What is the significance of amortization.	2	1	1	1
2.	Compute the following code and calculate its time complexity. int fun(int a, int b){ if(b<=0){	2	3	1	2
	return -1; } int res= a/b; return a-res*b;				
3.	Analyza matrix multiplication levil	1.4			
5.	Analyze matrix multiplication algorithm and Stassen's matrix multiplication with respect to divide and conquer approach.	2	2	2	1
4.	What is Greedy Method? Write the control abstraction for greedy method.	2	1	2	1
5.	Determine the number of binary search trees possible with 3 distinct keys with an example.	2	2	3	1
6.	Describe reliability design problem.	2	1	3	1
7.	Distinguish between Back Tracking and Branch& Bound techniques	2	2	4	1
8.	Determine the minimum number of colors required to color the following graph.	2	3	4	2
9.	Write the Non deterministic algorithm for sorting.	2	1	5	1
10.	Describe Clique Decision Problem and Determine the size of the maximum clique in the following graph and mention the nodes of the clique.	2	2	5	1
	1 0 5				

	Part-B $(5 \times 8 = 40 \text{ Marks})$		i Pa		Ę.
11. a)	Explain the asymptotic notations used for algorithm analysis with the help of graphs. Prove the following are correct.	4	2	1	. 1
	$i)12n^2+6n = O(n^3)$				
	ii) $10n^2 + 4n + 2 = \Omega(n^2)$				
	iii) $3n+2=\Theta(n)$. 4	SL.		
b)	i) Argue that the solution to recurrence $T(n)=T(n/3)+T(2n/3)+cn$, Where c is a constant, is $\Omega(n\log n)$ by appealing to a recursion tree.	4	3	1	2
	ii) Solve given recurrence relation using substitution method				
*	T(n) = T(n/2) + n, where $T(1) = 1$.				
12. a)	Write and demonstrate the Merge Sort divide-and-conquer algorithm on the array, $a = 7, 2, 5, 8, 3, 1, 6, 4$ and provide a divide-and-conquer recurrence that describes the number of steps required by the algorithm.	4	3	2	2
b)	Apply Dijkstra's algorithm to the following graph by considering vertex S as source.	4	4	2	2
	10 A 1 B B 6				
13. a)	Write Floyd Warshall's Algorithm and Solve all pairs shortest path problem for the given graph using Floyd Warshall's algorithm	4	2	3	1
	4 4 9 2 1 2				
b)	Give an algorithm using dynamic programming to determine how many distinct ways there are to give a cents in change using any coins from among pennies, nickels, dimes, and quarters. For example, there are 6 ways to give 16 cents change: a dime, a nickel, and a penny; a dime and 6 pennies; 3 nickels and a penny; 2 nickels and 6 pennies; one nickel and 11 pennies; and 16 pennies. Demonstrate your solution by showing a step-by-step solution for 12 cents change.	4	3	3	2
14. a)	Explain how back tracking approach is used for solving the N-Queen's problem with an example	3	1	4	1
b)	Construct Solution State Space Tree and calculate optimal cost for the following Travelling Salesman Problem using LCBB.	5	3	4	2
	12 A 11 5 4 7 3 6				

15.	a)	Prove that CNF Satisfiability problem is directly proportional to clique decision problem	4	2	5	1
ł	b)	Define Classes P, NP, NP-Hard, NP-complete problems. Give the relationship among them. Differentiate between NP-Hard and NP-complete.	4	1	5	1
16. 8	a)	The <i>binomial coefficient</i> , written in text as $n \in k$ (read " n choose k "), is the number of combinations of n things taken k at a time. One definition of this is recursive: $n \in k = [(n-1) \in k] + [(n-1) \in k]$, if $0 < k < n$ 1, otherwise.	4	2	1	1
		Write a memoized recursive function that computes the binomial coefficient. What is a tight bound on the running time of your algorithm?				
b))	Describe Master's theorem for all the cases and apply master's theorem to give tight asymptotic bounds for the following recurrences. i) T (n) = 2T (n/2) + n log n ii) T (n) = 2T (n/4) + n $^{0.51}$. iii) T (n) = $\sqrt{2T (n/2)} + \log n$ iv) T (n) = 2^n T (n/2) + n^n .	4	2	2	1
17.		Answer any <i>two</i> of the following:				
a)	Consider the following multistage graph and find the minimum cost path from s to t.	4	3	3	2
		V_1 V_2 V_3 V_4 V_5 V_5 V_6 V_7 V_7 V_8 V_8 V_9 V				
b)		Solve the following 0/11				
0)		Solve the following 0/1 knapsack problem using branch and bound. $n = 4, W = 16$	4	3	4	2
c)	I	Prove that Node cover decision problem is NP Complete.	4	1	5	1
1	1		e e le	1	5	1

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	23.75%
ii)	Blooms Taxonomy Level – 2	35%
iii)	Blooms Taxonomy Level – 3 & 4	41.25%
